首页    X射线荧光显微镜(XRF)    AttoMap-310
AM-310-01_副本

AttoMap-310

X射线荧光显微镜(XRF)

市场上最高分辨率的XRF
适用于大气/真空环境(用于低原子序数)
获得2023 Microscopy Today Innovation Awards

 

核心优势:

 

具备所有AttoMap-200的优点:

❶  高分辨率实验室microXRF

实现低至数微米 (3-5 µm) 的高分辨率

❷   ppm 灵敏度

使用Sigray的软件包,能量可调性达到百万分之一 (ppm) 级别

❸  能量可调性

利用多达5种不同的入射X射线光谱最大限度地提高效率和灵敏度

 

AttoMap-310独有的优势包括:

❹  获得薄样品(如生物样品)的小角度成像和/或消除衍射

      AttoMap-310配备测角台,可实现从法线至小角度的入射成像

❺   轻元素检测

在AttoMap高真空室内对低至痕量级的有机物进行分析

 


 

市场上分辨率最高的 XRF 显微镜

 

微束X射线荧光(microXRF)为成分分析提供出色的灵敏度其灵敏度通常是基于电子的谱学1000倍(ppm vs. ppt)。限制实验室microXRF的主要因素是可实现的束斑尺寸通常约为 20-50 µmSigray AttoMap通过使用Sigray 专利性的X射线聚焦光学器件,实现了数微米 (3-5 µm)的最高空间分辨率。与其他实验室microXRF使用的多毛细管光学透镜相比这些X射线聚焦光学透镜的效率要高得多并且得到的光斑尺寸要小得多。

 

 

 ppm 灵敏度(亚飞克级)

 

AttoMap在亚飞克的绝对检测限和百万分之一的相对检测限上实现了前所未有的灵敏度。这使得人们能高效地进行微量元素分布的显微观察。该系统的准确性和速度是各先进半导体公司采用 AttoMap来监控涉及痕量级掺杂物的过程的原因。

阶梯测量显示检测下限(LLD) 0.03等效膜厚度,或约8.75 x 1012 原子/cm2

 

 

高效率及高灵敏度下的能量可调性

 

X射线荧光高度依赖于出射X 射线的能量。荧光截面可以变化几个数量级,如表(已指定某几种元素所示Sigray AttoMap-200可通过软件轻松选择多达5靶材,包括硅基源和金基源等特殊靶材,以确保对多种元素的灵敏度。其他X射线源仅有一种X 射线靶材,这仅能提升部分材料的灵敏度和效率

 

 

作为X 射线源靶材几种元素的荧光截面(单位为靶/原子,barns/atom)。

 正如您所看到的,荧光截面可能会根据X射线靶材选择不同而变化几个数量级!

 

下图直观地展示了 X 射线源靶材选择对能量可调性的影响,其中比较了使用钨(W)和钼(Mo)成像的毒砂样品。

 

 

毒砂样品中砷的比较。由于MoAs荧光截面明显优于W砷的灵敏度显着提高

 

 

生物、地质和半导体样品的角成像

 

AttoMap-310的一个关键特性是它集成了测角,能够实现从法向入射 (90°)近掠入射(3°的各种入射角。这提供了诸多优势。对于薄样品如组织切片或薄膜等),在较浅的X射线入射角下可以极大地改善成像效果,因为 X 射线相互作用体积增加并且背景显著减少。对于晶体样品(如硅晶,可以完全避免衍射峰。

 

 

轻元素检测

 

AttoMap-310可检测低至B的元素,并可对CON等有机物进行痕量级 (<1%)定量测量。这是通过系统结合专用低能检测器和真空腔室来实现的真空腔室可实现10-4 Torr真空环境。该系统还可以在大气环境下运行,体现了使用的灵活性。

 

 

Z元素检测包括硼元素

 

 

 

硅晶圆中不同厚度Ge2nm5nm10nm的线性度

 

 



 

系统特点

 

✲  专利高亮度X射线源,其亮度领先其他microXRF系统中使用的X射线源50倍,并在单个源中可以提供多达5种不同的光谱。

✲  X射线光学透镜与传统多毛细管microXRF系统相比具有优势

✲  用于可变角度成像的测角台(3至90°)

✲  真空腔室的真空度可低至<10-4 Torr

✲  对于矿物学和半导体晶圆图案识别等不同应用领域,都具备灵活且直观的软件操作流程。还有灵活且可定制的交互式笔记本(Jupyter Notebook)以及重量百分比的基本参数分析。

 


 

具有专利的多靶超高亮度X射线源

 

Sigray X射线源与X射线光学透镜结合使用时其亮度领先其他microXRF 系统的光束(光源+光学透镜50 倍以上。X射线源通过专利设计来实现这一点,其中多种靶材与金刚石处于最佳热接触状态,而金刚石具有优异的导热性能。金刚石的快速冷却可以使 X 射线源承受更高的功率负载,从而产生强 X 射线束。这种热效益使得更多的材料可以用作 X 射线源靶材,每种材料都会特定能量产生强特征 X 射线。AttoMap-200光源最多可以定制4种靶材,从而允许软件为您的样品选择最佳谱。在前面的例子中可以清楚地看到能量可调的效果。

 

 

AttoMap-200 X 射线源最多选择5个元素。上面给出了示例,也可以根据要求提供其他目标(例如 Ag 等)

 

 

X射线透镜:双抛物面反射镜透镜

 

对于任何 microXRF系统的性能而言聚焦 X 射线光学透镜的重要性可与 X 射线源相媲美。Sigray  X 射线光学透镜的领先制造商,也是唯一能够制造AttoMap系统中使用的X射线光学透镜制造商。其他microXRF系统通常使用多毛细管光学透镜 X 射线聚焦到样品上的一个点上

多毛细管(左)由于色差(X 射线能量较低,光斑尺寸较大),会产生模糊的焦点。

Sigray 光学透镜(右)产生单一紧密聚焦的笔形光束,没有色差。

 

 

测角台

 

AttoMap-310可以在样品上实现近掠入射这最大程度地提高了采集探测器和与薄样品作用X射线间的立体角,从而大大缩短了采集时间。通过一种正在申请专利的计算机断层扫描X射线荧光成像(CL-XRFI)方法旋转样品,即使在低入射角采集数据时也能实现高分辨率。可变角度采集的另一个好处是可以完全避免晶体材料(例如硅晶)的衍射峰。

 

 

真空腔体

 

AttoMap-310封闭在真空腔体中,能够承受低于10-4 Torr的环境这对于低原子序数元素(如有机污染物)的痕量级(<1%)定量测量至关重要。相较而言,具有较低真空或氦气环境的系统只能检测高浓度的有机材料,因为这些元素的X射线能量较低(例如碳仅为282 eV即使样品和探测器之间存在少量原子,这些能量也会迅速衰减。

 

 

软件

 

AttoMap-310附带一套可扩展且直观的软件。该软件根据感兴趣的应用有着各自的优势:

半导体:自动图样识别可实现晶圆上基于选定方案高效点分析。

地质学:通过基于人工智能的聚类算法进行矿物学分类,分割颗粒并根据元素成分识别其矿物学种类

材料科学和生命科学:通过软件图形界面进行标准无标准的基本参数分析,得到重量百分比。Sigray为对批量标准化测量感兴趣的用户提供了Jupyter Notebook,对Python有一定了解的用户可以轻松进行拓展或修改。

软件功能包括:单文件和多文件分析、谱拟合和卷积、无标准的基本参数 (fundamental parameterFP) 定量分析模型工具、使用 FP 模型的相对重量百分比计算使用机器学习的谱聚类谱分解、光学和荧光图像叠加和系统的可扩展性。

 

 

 



 

AttoMap-310的技术规格:

 

  参数 规格
整体参数 空间分辨率 配备高分辨率光学透镜时:低至3-5 μm
配备标准光学透镜时:7-10 μm
检测灵敏度 亚 ppm 相对检测灵敏度,可以对痕量元素成像。
绝对灵敏度:皮克 (Picogram) 至飞克 (femtogram)( 决定于元素和检测时间 )
可变采集角度范围 3°(近掠入射)至90°(法向入射),最小步长0.01°
光源 类型 Sigray 专利高亮度微聚焦 X 射线源
靶材 最多可选择5种靶材。
可从 Si、Cr、Cu、Rh、W、Mo、Au、Ti、Ag 中选择。
其他可根据要求提供。
功率 | 电压 50W | 20-45 kVp
X射线聚焦镜 类型 Sigray独有的双抛物面型X射线聚焦透镜
传输效率 ~80%
倍率 默认1:1 放大倍率
有可选的聚焦能力更强的聚焦镜(用于达到更高分辨率)
内壁涂层 铂,用于提高光学透镜的收集效率。
探测器 种类 硅漂移探测器(SDD)
能量分辨率 <129 eV (Mn-Ka)
尺寸 尺寸大小 137cm W x 167cm H x 98cm D
样品台移动范围 100 x 100 mm(可根据要求升级)
附加功能 其它功能和模块 集成式光学显微镜及透射式 X 射线显微镜
软件 Sigray Composition (有图形界面的分析工具)
Semiconductor Acquisition
Jupyter notebooks(可根据要求提供)